Soru Çözümü
- Doğrusal fonksiyonun genel denklemi $f(x) = ax + b$ şeklindedir.
- Verilen $f(-1) = 2$ eşitliğinden $a(-1) + b = 2 \Rightarrow -a + b = 2$ denklemi elde edilir.
- Verilen $f(2) = 11$ eşitliğinden $a(2) + b = 11 \Rightarrow 2a + b = 11$ denklemi elde edilir.
- İkinci denklemden birinci denklem çıkarılırsa: $(2a + b) - (-a + b) = 11 - 2 \Rightarrow 3a = 9 \Rightarrow a = 3$ bulunur.
- $a = 3$ değerini $-a + b = 2$ denkleminde yerine koyarsak: $-3 + b = 2 \Rightarrow b = 5$ bulunur.
- Fonksiyonun denklemi $f(x) = 3x + 5$ olarak belirlenir.
- Y eksenini kestiği nokta, $x = 0$ olduğunda $f(x)$ değeridir. Yani $f(0) = b$ değeridir.
- $f(0) = 3(0) + 5 = 5$. Bu noktanın koordinatları $(0, 5)$'tir.
- Doğru Seçenek C'dır.