Birinci Dereceden Basit Eşitsizlikler Test 1

Soru 2 / 16
Soru Çözümü
  • Verilen eşitsizlik `$ \frac{3x-1}{2} < x+1 $` şeklindedir.
  • Eşitsizliğin her iki tarafını `$2$` ile çarpalım: `$ 3x-1 < 2(x+1) $`.
  • Parantezi açalım: `$ 3x-1 < 2x+2 $`.
  • `$2x$`'i sol tarafa, `$-1$`'i sağ tarafa atalım: `$ 3x-2x < 2+1 $`.
  • İfadeyi sadeleştirelim: `$ x < 3 $`.
  • Bu eşitsizliğin çözüm kümesi, `$3$`'ten küçük tüm gerçek sayılardır.
  • Aralık gösterimiyle çözüm kümesi `$ (-\infty, 3) $` şeklindedir.
  • Doğru Seçenek C'dır.
  • Cevaplanan
  • Aktif
  • Boş