Mutlak değer fonksiyonları, matematikte özellikle fonksiyonların grafiksel analizi açısından önemli bir yere sahiptir. f(x) = ± |ax + b| ± c şeklinde tanımlanan mutlak değer fonksiyonları, temel mutlak değer fonksiyonu olan f(x) = |x|’in daha genel ve karmaşık halleridir. Bu fonksiyonların grafiklerini çizerken, bazı temel adımları takip etmek gereklidir.

Grafik Çizim Adımları:

  1. Temel Fonksiyonun Çizimi: İlk olarak, f(x) = |ax + b| fonksiyonunun grafiğini çizeriz. Bu grafik, genellikle “V” şeklinde olup, simetri ekseni ax + b = 0 denkleminden bulunur. Bu simetri ekseni, grafiğin tepe noktasıdır ve bu noktada fonksiyonun yönü değişir.
  2. ± İşaretlerinin Etkisi: Grafikteki ± işaretleri, fonksiyonun yönünü belirler. Eğer fonksiyonun başındaki işaret pozitifse grafik yukarı doğru, negatifse aşağı doğru açılır. Bu işaret, fonksiyonun eğimini ve grafiğin hangi yöne doğru açılacağını belirler.
  3. Dikey Kaydırma (±c): Son olarak, ± c terimi fonksiyonun grafiğini y ekseni boyunca yukarı veya aşağı kaydırır. Bu, grafiğin tamamının yukarı veya aşağı hareket etmesine neden olur, ancak grafiğin şeklini değiştirmez.

Nitel Özellikler:

  • Simetri: Mutlak değer fonksiyonları simetrik bir yapıya sahiptir. Simetri ekseni, grafiğin tepe noktasından geçer.
  • Tepe Noktası: f(x) = ± |ax + b| fonksiyonlarında, grafiğin en düşük veya en yüksek noktası tepe noktası olarak adlandırılır ve bu nokta, ax + b = 0 denklemiyle bulunur.
  • Kayma ve Yön Değiştirme: ± c terimi, fonksiyonun grafiğini yukarı veya aşağı kaydırır, bu da grafiğin yerini değiştirir ancak şeklini değiştirmez.


Liselere Giriş Sınavı (LGS)
15 Haziran 2025 Pazar

Temel Yeterlilik Sınavı (TYT)
14 Haziran 2025 Cumartesi

Alan Yeterlilik Sınavı (AYT)
15 Haziran 2025 Pazar